
 Routing is a key function: determine a
(best) path from any source to any
destination

 There exist multiple paths
 Which path is best?
 Depend on objective:
◦ Minimize number of hops
◦ Minimize end-to-end delay
◦ Maximize available bandwidth

 Must have global knowledge about
network state to perform this task

1

2

1

2

3

4

5

6

A

B

Switch or router

Host

Figure 7.23

An example of a packet-switch network

Paths: 1-3-6, 1-4-3-6, 1-2-5-6, …

1. Correctness: correct route and accurate
delivery of packets

2. robustness: adaptive to changes of
network topology and varying traffic
load

3. Cleverness: ability to detour congestion
links and determine the connectivity of
the network.

4. Efficiency: rapid finding of the route
and minimization of control messages.

3

 Static vs. dynamic:
◦ Static: manually compute routes, simple, but not

scalable and dynamic
◦ Dynamic: automatic route computation, adaptive to

dynamics of network but complicated

 Centralized vs. distributed
◦ Centralized: a center entity computes all routes and

load the routes into all routers, but not scalable
◦ Distributed: routers exchange topology information

and perform own computation of routes, but
inconsistent and loop routes.

 In datagram, routing is based on packet by
packet but in VC, routing is executed during
setup

4

 Store routing information, being looked up
to forward packets

 Different networks have different routing
tables
◦ Datagram: destination address + next hop

◦ VC: incoming VCI + out-going VCI + out-
going port #

5

6

1

2

3

4

5

6
A

B

C

D

1

5

2

3

7

1

8

5
4 2

3

6

5

2

Figure 7.24

Virtual-circuit packet switching

Link 1—3 is shared by connection 1 and 2

Link 3—4 is shared by connection 2 and 3

Therefore the connection is called virtual-circuit.

Three connections:

 1. Solid line: A 1 3 6 B with local VCIs 1,2,7,8

 2. Dotted line: A …1…3…4 …5… D with local VCIs 5,3,4,5,2

 3. Dashed line: C --- 2--- 4--- 3--- 6 B with local VCIs 6,3,2,1,5

Reasons using local VCIs rather than global VCIs:
1. searching for an available VCI is easier because of local uniqueness

2. More available local VCIs, so there can have more connections

7

Incoming Outgoing

node VC node VC

 A 1 3 2

 A 5 3 3

 3 2 A 1

 3 3 A 5

Incoming Outgoing

node VC node VC

 1 2 6 7

 1 3 4 4

 4 2 6 1

 6 7 1 2

 6 1 4 2

 4 4 1 3

Incoming Outgoing

node VC node VC

 3 7 B 8

 3 1 B 5

 B 5 3 1

 B 8 3 7

Incoming Outgoing

node VC node VC

 C 6 4 3

 4 3 C 6

Incoming Outgoing

node VC node VC

 2 3 3 2

 3 4 5 5

 3 2 2 3

 5 5 3 4

Incoming Outgoing

node VC node VC

 4 5 D 2

 D 2 4 5

Node 1

Node 2

Node 3

Node 4

Node 6

Node 5

Figure 7.25

Routing table for virtual-circuit packet switching network.

8

1

2

3

4

5

6

A

B

Switch or router

Host

Figure 7.23

An example of a datagram packet-switch network

Paths: 1-3-6, 1-4-3-6, 1-2-5-6, …

9

 2 2

 3 3

 4 4

 5 2

 6 3

Node 1

Node 2

Node 3

Node 4

Node 6

Node 5

 1 1

 2 4

 4 4

 5 6

 6 6

 1 3

 2 5

 3 3

 4 3

 5 5

Destination Next node

 1 1

 3 1

 4 4

 5 5

 6 5

 1 4

 2 2

 3 4

 4 4

 6 6

 1 1

 2 2

 3 3

 5 5

 6 3

Destination Next node

Destination Next node

Destination Next node

Destination Next node

Destination Next node

Figure 7.26

Routing table for datagram packet switching network

 Size of routing tables will become extremely large
when network increases

 Solution is: the hosts close to each other are
assigned network addresses with the same
prefixes. In a remote routing table, all these hosts
are treated as one address, just one entry in the
routing table. (only in the local routing table,
these hosts are treated separately).

 All packets towards to these hosts are forwarded
to this area from remote area based on remote
routing table and further forwards to the specific
host based on local routing table.

 Therefore hierarchical addressing.

10

11

0000

0001

0010

0011

0100

0101

0110

0111

1100

1101

1110

1111

1000

1001

1010

1011

R1 R2

1

2 5

4

3

00 1

01 3

10 2

11 3

00 3

01 4

10 3

11 5

(a)

0000

0111

1010

1101

0001

0100

1011

1110

0010

0101

1000

1111

0011

0110

1001

1100

R1 R2

1

2 5

4

3

0000 1

0111 1

1010 1

… …

0001 4

0100 4

1011 4

… …

(b)

Figure 7.27

Hierarchical routing table

 IP address = Network ID + Host ID
◦ Host ID = subnetwork ID + host ID

 Moreover, supernetting (CIDR--Classless
InterDomain Routing) is another type of
hierarchical addressing in IP

12

 Best path is based on different metrics: hops, delay,
available bandwidth, in general, call them cost.

 The best path is one with minimum cost or shortest path.

 The routing algorithm must be told which metric to use

 The routers exchange (routing) information to obtain values
of these metrics for different links.

 Using one of two types of typical routing algorithms to
compute the best route
◦ Link state routing

◦ Distance vector routing

 Routing information exchange (and route computation) is
the most important function behind networks even we do
not feel it. Of course, this function should be efficient and
not consume too much network bandwidth.

13

 Every router maintains its distance vector
(DV) which records distance to each of
other hosts.

 Every router exchanges DV with its
neighbors periodically.

 Whenever a router receives a DV from its
neighbor, it checks whether new better
routes through this neighbor can be
found, if yes, modifies its DV.

 From its DV, a router can directly derive its
routing table.

 Distance vector routing uses Bellman-Ford
algorithm 14

 Every router maintains its link state packet
(LSP) which records the state information of
links to all its neighbors.

 A router floods its LSP to entire network,
i.e., all routers, (whenever its link state
changes)

 When a router receives LSPs from other
routers, it can construct a map of entire
network and from the map, compute
shortest paths between any pair of host
(using Dijkstra algorithm), thus, derive its
routing table.

15

16

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

A sample network with associated link costs

Nodes represent routers/switches, edges represent links,

The value on a edge represents the cost of using that link.

Here we assume each link is nondirected. If a link is directed,

the cost can be assigned on each direction.

 Principle: if node N is in the shortest path from A to B, then the
path from A to N is also the shortest path and the path from N to
B is also the shortest path. See example

 Formalization:

◦ consider node i to a destination d.

◦ define Dj to be the current estimate of minimum cost from
node j to destination d. of course Dd=0.

◦ let Cij be the link cost from node i to node j . Cii=0 and Cij= if
i and j are not directly connected.

◦ Di=min{Cij+Dj},  j  i = min{Cik+Dk}, k is i’s neighbor.
Example

 Algorithm (computing shortest path from nodes to destination d):
1. Initialization: Di = , i  d, and Dd=0

2. Updating: for each i  d, Di=min{Cik+Dk}, k is i’s neighbor

3. Repeat step 2 until no more changes occur in the iteration.

17

18

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

Shortest path principle

Want to compute shortest path from 2  6,

If was told that 16 is 3, then 26 via 1 is 3+3=6

 46 is 3, 26 via 4 is 1+3=4

 56 is 2 26 via 5 is 4+2=6

 therefore shortest path from 26 is achieved if first go to 4.

19

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

Shortest path formalization

Want to compute shortest path from 2  6,

Suppose D1 = 3, and C21 = 3

 D4 = 3, C24 = 1

 D5 = 2 C25 = 4

 therefore shortest path from 26 is computed as

 D2 =min{C21+D1, C24+D4, C25+D5}

 = min{3+3, 1+3, 4+2} = 4

20

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

Shortest path computation to node 6

 Iteration Node 1 Node 2 Node 3 Node 4 Node 5

Initial (-1,) (-1,) (-1,) (-1,) (-1,)

 1 (-1,) (-1,) (6,1) (-1, ) (6,2)

 2 (3,3) (5,6) (6,1) (3,3) (6,2)

 3 (3,3) (4,4) (6,1) (3,3) (6,2)

 4 (3,3) (4,4) (6,1) (3,3) (6,2)

For each node i, label it as (n,Di) where Di is the current

minimum cost from i to the destination and n is the next

node along the current shortest path.

21

1

2

3

4

5

6

1

1

2

2

2

Figure 7.29

Shortest path tree – from all nodes to a destination

22

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

 suppose for node 2, shortest paths to all other destinations

The red lines indicate shortest paths from node 2 to all other nodes.

The distance vector in node 2:
Destination distance next node

 1 3 1

 3 3 4

 4 1 4

 5 4 5

 6 4 4

The routing table in node 2:
Destination next node

 1 1

 3 4

 4 4

 5 5

 6 4

Another view of shortest paths: from a node to all destination

23

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

 Initial distance vector in node 2

Destination distance next node

 1 3 1

 3  -1

 4 1 4

 5 4 5

 6  -1

How node 2 computes shortest paths to all other destinations

Receive distance vector from node 4

 Destination distance

 1 5

 2 1

 3 2

 5 3

 6 

 New distance vector in node 2

Destination distance next node

 1 3 1

 3 3 4

 4 1 4

 5 4 5

 6  -1

After receiving distance vector from 4, node 2 modifies its initial distance vector

24

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

How node 2 computes shortest to all other destination

Receive distance vector from node 5

 destination distance

 1 

 2 4

 3 

 4 3

 6 2

New distance vector in node 2

Destination distance next node

 1 3 1

 3 3 4

 4 1 4

 5 4 5

 6 6 5

Current distance vector in node 2

Destination distance next node

 1 3 1

 3 3 4

 4 1 4

 5 4 5

 6  -1

When receiving distance vector from 5, modify its distance vector

25

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

How node 2 computes shortest to all other destination

Receive distance vector from node 4

 Destination distance

 1 5

 2 1

 3 2

 5 3

 6 3

 New distance vector in node 2

Destination distance next node

 1 3 1

 3 3 4

 4 1 4

 5 4 5

 6 4 4

Current distance vector in node 2

Destination distance next node

 1 3 1

 3 3 4

 4 1 4

 5 4 5

 6 6 5

When receiving distance vector from 4, modify its distance vector again

 At this time, the distance vector converges to stable state

 From above example, it is clear that Bellman-
Form algorithm can be executed at every node to
compute the shortest path from the node to all
other nodes (destinations), thus, totally
distributed.

 The prerequisite is that neighbors exchange
distance vectors periodically.

 Whenever a node receives a distance vector from
its neighbor, it checks whether there exists a new
shortest path from this neighbor to a destination
, if yes, modify its distance vector.

 The nodes will receive distance vectors from its
neighbors mutually, their computations of
shortest paths depend on each other, i.e., in a
circular way. However all of them will finally
converge to the correct results.

26

 Apart from periodical broadcast of distance
vector, triggered updates are also used, which
means that as soon as a node find its distance
vector is changed, the node broadcasts its
distance vector.

 For each node i, it uses the following equations
to compute (or update) its distance vector:
◦ Dii=0

◦ Dij =min{Cik + Dkj},  k  i where k is i’s neighbor.

 In our examples, what we show is from multiple

nodes to a specific destination.

27

28 Figure 7.28

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Recomputation of minimum cost when link breaks

Update Node 1 Node 2 Node 3 Node 4 Node 5

Before break (3,3) (4,4) (6,1) (3,3) (6,2)

 1 (3,3) (4,4) (4,5) (3,3) (6,2)

 2 (3,7) (4,4) (4,5) (2,5) (6,2)

 3 (3,7) (4,6) (4,7) (2,5) (6,2)

 4 (2,9) (4,6) (4,7) (5,5) (6,2)

 5 (2,9) (4,6) (4,7) (5,5) (6,2)

 eventually converge

Assume: computation

 and transmission are

synchronized.

29

3 1 2 4
1 1 1

(a)

Figure 7.31

Counting to infinity problem

Before link failure

3 1 2 4
1 1

X (b) After link failure

 Update node1 node 2 node 3

Before break (2,3) (3,2) (4,1)

 After break (2,3) (3,2) (2,3)

 1 (2,3) (3,4) (2,3)

 2 (2,5) (3,4) (2,5)

 3 (2,5) (3,6) (2,5)

 4 (2,7) (3,6) (2,7)
 … … … …

The recomputation keeps continuation until costs become very large, and guess the destination

 is unreachable. How to solve it?
On the other hand, if the broken link restored, the recomputation will converge quickly.

Therefore, good news travels quickly, but bad news travels slowly.

 Split-horizon
◦ Minimum cost to a given destination is not sent

to a neighbor if the neighbor is the next node
along the shortest path.

 Split horizon with poisoned reverse
◦ Minimum cost to a destination is set to infinity if

the neighbor is the next node along the shortest
path before sending out the minimum costs.

30

31

3 1 2 4
1 1 1

(a)

Figure 7.31

Split horizon with poisoned reverse

Before link failure

3 1 2 4
1 1

X (b) After link failure

 Update node1 node 2 node 3

Before break (2,3) (3,2) (4,1)

 After break (2,3) (3,2) (-1,)

 1 (2,3) (-1,) (-1,)

 2 (-1,) (-1,) (-1,)

 Suppose the topology of a network (i.e., a graph)
is known, Dijkstra’s algorithm will find the
shortest paths from a node n to all other nodes as
follows:
◦ Find the closest node (say n1) from node n, which is a neighbor

of n. modify the costs of other nodes.

◦ Find the second closest node (say n2) from n, which is a neighbor
of n or n1. Modify the costs of other nodes.

◦ Find the third closest node (say n3)from n, which is a neighbor of
n, n1, or n2. Modify the costs of other nodes.

◦ ……

 How does a node get the network topology?
◦ Every node has a link state packet (LSP) which records its

neighbors and the costs to these neighbors.
◦ Every node floods its LSP to the entire network (all nodes)

at beginning or whenever link statuses change.
◦ Any node can construct the network topology after it

receives all LSPs.

32

33

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

Example: Dijkstra’s algorithm

Iteration N D2 D3 D4 D5 D6

Initial {1} 3 2 5  

 1 {1,3} 3 2 4  3

 2 {1,2,3} 3 2 4 7 3

 3 {1,2,3,6} 3 2 4 5 3

 4 {1,2,3,4,6} 3 2 4 5 3

 5 {1,2,3,4,5,6} 3 2 4 5 3

34

1

2

3

4

5

6

1

2

2

3

2

Figure 7.32

Shortest path tree from node 1 to other nodes after using Dijkstra’s algorithm

Routing table from shortest path tree for node 1

 Destination next node cost

 2 2 3

 3 3 2

 4 3 4

 5 3 5

 6 3 3

35

1

2

3

4

5

6

1

1

2

3
2

3

5

2

4

Figure 7.28

Link State Packets

LSP1: (2,3), (3,2),(4,5) LSP2: (1,3),(4,1),(5,4)

LSP3: (1,2),(4,2),(6,1) LSP4: (1,5),(2,1),(5,3)

LSP5: (2,4),(4,3),(6,2) LSP6: (3,1),(5,2)

The LSP of a node records its current neighbors and their current

corresponding costs. From LSPs, a node can construct a map of

the entire network.

 Distance vector routing
◦ Distance vector records costs to all nodes
◦ Neighbors exchange distance vectors periodically.
◦ The convergence will occur eventually and slowly
◦ Packets may loop for a while during the process of convergence
◦ React to link failure very slowly, counting-to-infinity problem.

 Link state routing
◦ LSP records costs to neighbors.
◦ Flood LSP to entire network whenever topology change
◦ React to network failure fast
◦ Too much flood when topology changes quickly and consume

network bandwidth

 Note: the route from source to destination is distributed
and synthesized by all nodes along the route

36

 Flooding
◦ Forwards packets to all ports except the coming port

◦ Packet eventually arrive at destination

◦ No need for routing table, very robust

 Problem: may swamp network.

 Solutions:
◦ Using TTL (Time-to-live), a small number in the packet,

every router decreases it, when reach 0, discards it

◦ Each router adds its identifier into the packet, when sees it
again, discards it

◦ Each router records the source and sequence number of a
packet, when sees again, discards it

◦ Generally use in specific situation, such as flood LSPs.

37

 Source of a packet puts the entire route in the
header of the packet

 Intermediate nodes do not need routing
ability but forward packets according the
router in the header

 Need route discovery at first place.

38

 Fixed-length small cells: 5 byte header + 48 byte
data = 53 bytes.
◦ Simplify the implementation of ATM switches and make very

high speed operation possible
◦ Many functions can be implemented in hardware
◦ ATM switches are very scalable, such as 10,000 ports with

each port running at 150Mbps
◦ Small waiting time and delay
◦ Finer degree of control

 ATM can operate over LANs as well as global
backbone networks at the speeds from a few Mbps to
several Gbps.

 QoS attributes allow ATM to carry voice, data, and
video.

 ATM uses local VCIs, moreover, it uses virtual path
connection to bundling several VCs with the common
path together. Therefore one more level multiplexing.

 IP over ATM has been proven to be successful.
39

 Purpose of traffic management is to
provide QoS.

 Mechanisms:
◦ Control load on links and switches

◦ Set priority and scheduling at
routers/multiplexers to provide differentiated
treatments to different packets.

◦ Perform policing and shaping (admission
control)

◦ Congestion control.

 For a packet, we are interested in
◦ End-to-end delay, also jitter (variation of delay)

◦ Packet loss

40

 Queue strategies (control sharing of bandwidth among users):

◦ FIFO (First In First Out):

 all arriving packets are put in a common queue and sent in the order of
arrival.

 Packets are discarded when queue (i.e., buffer) is full at the time of arrival

 Packet length, queue size, and interarrival time affect the performance

 A high rate user will deprive other users of transmitting packets.

◦ FIFO with discard priority

 Packets are classified as different types, only discard low priority packets.

◦ Fair Queues

 Every user flow has a logical queue, all the queues shares bandwidth
equally.

◦ Weighted Fair Queue

 Every user flow has a logical queue, but each queue has a specific weight,
queues shares bandwidth based on their weights.

 The weights may be based on types of traffic, or how much payment.

41

 Problem with fair queue: in core network, too many
flows at the same time and tracking the states of
all flows is difficult.

 One solution is having a limited number of logical
queues with each for a given class of flows. But the
bad sender may hog the buffer resource.

 So RED: randomly drop packets before buffer
overflows.
◦ A higher rate source would suffer higher dropped packets.
◦ Two thresholds: minth and maxth,
 Below minth, no drop,
 From minth  maxth, randomly drop arriving packets with

increasing probability
 Above maxth, drop all arriving packets.

42

 When more incoming packets than out-going
capacity, buffer is needed

 If the situation lasts too long, buffer will be
full, packets be discarded, congestion occurs.

 Retransmission of lost/discard packets worsen
congestion

 As a result, the throughput will be very low.

 Some ways are needed to control and solve
congestion

43

44

Congestion control in packet switching networks

Question: is it OK to increase buffer size?

Not OK.

1.Buffer is larger, then waiting time is longer. It will

cause time out and retransmit packets, thus more congestion.

If buffer size is infinite, then packet can delay forever.

Congestion control is a very hard problem.

 Open-loop (preventive approaches):
◦ If a traffic flow will degrade the network performance and QoS

can not be guaranteed, then reject the traffic flow from the
beginning. Called admission control.

◦ Leaky bucket traffic policing:
 An admitted bad user may violate initial contact and pour too much

traffic into network

 There is a bucket which controls a constant rate flowing into
network.

 The user packets are first poured into the bucket, instead of to
network.

 Once amount of packets into bucket excesses certain level, the
further packets will be tagged. If the bucket is full, the extra packets
will be discarded. leaky bucket

 Whenever congestion occurs, the tagged packets will be discarded

 Close-loop (after fact approaches):
◦ After congestion occurred, eliminate or reduce congestion.

45

46

Water drains at

a constant rate

Leaky bucket

Water poured

irregularly

Figure 7.53

Water above threshold will be tagged

 Policing: a process of monitoring and enforcing the traffic flow to
not violate the agree upon contract (i.e., maximum flow)
◦ Leaky bucket, the bucket size determines maximum allowed flow.

 Shaping: a process of altering a traffic flow to avoid burst.
◦ Leaky bucket: varying input to a bucket (buffer) but constant (smooth)

output from the bucket (buffer). The bucket size determines the
maximum burst.

◦ Token bucket: token bucket for tokens and buffer for packets
 tokens are generated at constant rate and put into token bucket.

 When token bucket is full, the new generated tokens are discarded.

 When a packet comes,
 if buffer is empty, check whether there is tokens in token bucket

 If has token, the packet is transmitted without entering the buffer (remove one token
also),

 Otherwise, the packet enters the buffer

 Otherwise, the packet enters the buffer

 If the buffer is not empty and the token bucket is not empty, constantly take
one packet at one time and transmit it (also remove one token)

47

48

Incoming traffic Shaped traffic
Size N

Packet

Server

Figure 7.58

Leaky bucket traffic shaping

49

Incoming traffic Shaped traffic
Size N

Size K

Tokens arrive
periodically

Server

Packet

Token

Figure 7.59
Token bucket traffic shaping

 End-to-end: the destination notices the
sender the congestion.

 Hop-by-hop: a node detecting congestion
notices its upstream node to slow down,
which may detect congestion and notice its
upstream node, possible until the source.

 Hop-by-hop can react faster than end-to-
end.

50

 The node detecting congestion can send an
explicit message to notice the congestion.

 The explicit message may be sent as a
separate packet or piggybacked.

 Implicit feedback rely on some surrogate
information such as time out to deduce
congestion.

51

 TCP uses sliding-window for flow control
◦ Advertised window to tell sender how many bytes to send and

guarantee the receiver window never overflow
◦ However advertised window does not prevent buffers in routers

overflow, I.e., congestion.

 Another window: congestion window used by sender
◦ Sender sends min{advertised window, congestion window}
◦ At beginning, the congestion window is set to one maximum

size segment.
◦ Whenever receiving a ACK, sender increases congestion window

(double, then linearly)
◦ Whenever time-out or a duplicate ACK is received, sender will

reduce congestion window (half, then linearly).

52

